Ref No:

< SRI KRISHNA INSTITUTE OF TECHNOLOGY BANGALORE>

COURSE PLAN

Academic Year 2019-2020

Program:	B E – Information Science & Engineering		
Semester :	3		
Course Code:	18CS33		
Course Title:	Analog and Digital Electronics		
Credit / L-T-P:	3 / 3-0-0		
Total Contact Hours:	40		
Course Plan Author:	Asha B R		

Academic Evaluation and Monitoring Cell

< Sri Krishna Institute of Technology,#29,Hesarghatta Main Road, Chimney Hills, Chikkabanavara Post> <BANGALORE – 560090, KARNATAKA, INDIA> <Phone / Fax :+91-080-2372147> <Web:WWW.skit.org.in >

Page # 1 / 23

Table of Contents

A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	
3. Course Material	
CircuitMaker, KiCad EDA,ADS Circuit Design Software, Active HDL, Qs	
NGCircuit Design Software,Simulide, OrCAD	
4. Course Prerequisites	
Basic Electronics	
5. Content for Placement, Profession, HE and GATE	-
B. OBE PARAMETERS	
1. Course Outcomes	
2. Course Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage 2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module - 1 Module - 2	-
E1. CIA EXAM – 1	•
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	-
Module – 3	
Module – 4	
E2. CIA EXAM – 2	•
a. Model Question Paper - 2	
b. Assignment – 2	
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	IS
Semester:	3	Academic Year:	2019- 20
Course Title:	Analog and Digital Electronics	Course Code:	18CS33
Credit / L-T-P:	3/3-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	Asha B R	Sign	Dt:
Checked By:		Sign	Dt:
CIA Targets	75%	SEE Target:	68%

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Module Content	Teachi	Module	Blooms
ule	Module Content	ng	Concepts	Level
		Hours		
	Photodiodes, Light Emitting Diodes and Optocouplers ,BJT Biasing :Fixed bias ,Collector to base Bias , voltage divider bias, Operational Amplifier Application Circuits: Multivibrators using IC-555, Peak Detector, Schmitt trigger, Active Filters, Non-Linear Amplifier, Relaxation Oscillator, Current-to-Voltage and Voltage-to-Current Converter , Regulated Power Supply Parameters, adjustable voltage regulator ,D to A and A to D converter.		Diodes Application circuits Opamp application circuits	L3
	Karnaugh maps: minimum forms of switching functions, two and three variable Karnaugh maps, four variable karnaugh maps, determination of minimum expressions using essential prime implicants, Quine-McClusky Method: determination of prime implicants, The prime implicant chart, petricks method, simplification of incompletely specified functions, simplification using map-entered variables		Logic gates fundamentals Boolean equation simplification	L4
	Combinational circuit design and simulation using gates: Review of Combinational circuit design, design of circuits with limited Gate Fan-in ,Gate delays and Timing diagrams, Hazards in combinational Logic, simulation and testing of logic circuits. Multiplexers, Decoders and Programmable Logic Devices: Multiplexers, three state buffers, decoders and encoders, Programmable Logic devices, Programmable Logic Arrays, Programmable Array Logic.		Data processing circuits design Combinational circuit applications	L3
4	Introduction to VHDL: VHDL description of combinational circuits, VHDL Models for multiplexers, VHDL Modules. Latches and Flip-Flops: Set Reset Latch, Gated Latches, Edge-Triggered D Flip Flop 3,SR Flip Flop, J K Flip Flop, T Flip Flop, Flip Flop with additional inputs, Asynchronous Sequential Circuits	8	VHDL models Flip flop Operation	L3
	Registers and Counters: Registers and Register	8	Register Design	L3

Transfers, Parallel Adder with accumulator, shift registers, design of Binary counters, counters for other sequences, counter design using SR and J K Flip Flops, sequential parity checker, state tables and graphs	Counter Design	
-		

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Rese	earch: Recent developments on the concepts – publications in journals; co	onference	s etc.
Modul	Details	Chapters	Availability
е		in book	
Α	Text books (Title, Authors, Edition, Publisher, Year.)		-
1	Charles H Roth and Larry L Kinney, Analog and Digital Electronics,	1,2,3,4,5,	In Lib
1-5	Cengage Learning,2019	6,7,8,9,10	
		,11,12,13,1	
		4,15	
B	Reference books (Title, Authors, Edition, Publisher, Year.)	Les L He	
1	Anil K Maini, Varsha Agarwal: Electronic Devices and Circuits, Wiley, 2012.	In Lib	- In Lib and Dant
2-5	Donald P Leach, Albert Paul Malvino & Goutam Saha: Digital Principles	In Lib	In Lib and Dept
	and Applications, 8th Edition, Tata McGraw Hill, 2015		
2-5	Stephen Brown, Zvonko Vranesic: Fundamentals of Digital Logic Design	In Lib	
	with VHDL, 2 nd Edition, Tata McGraw Hill, 2005.		
2-5	R D Sudhaker Samuel: Illustrative Approach to LogicDesign, Sanguine-	In Lib	
= 5			
	Pearson, 2010	Les L He	
2-5	M Morris Mano: Digital Logic and Computer Design, 10 th Edition, Pearson,	In Lib	-
	2008.		
С	Concept Videos or Simulation for Understanding	-	-
1	https://www.youtube.com/watch?v=jkEVGQ2lnel		
2	https://www.youtube.com/watch?v=-rFOCGT7Xyw		
3	https://www.youtube.com/watch?v=-6w-MHjwzTo		
4	https://www.youtube.com/watch?v=59BbncMjL8I		
5	https://www.youtube.com/watch?v=tsTb-OYsI-M		
6	https://www.youtube.com/watch?v=_yHo2qq82P0		
7	https://www.youtube.com/watch?v=YAlopKvESs0		
8	https://www.youtube.com/watch?v=05SWZgi6ySc		
9	https://www.youtube.com/watch?v=-paFaxtTCkl		
10	https://www.youtube.com/watch?v=5vkWccb7uO4		
D	Software Tools for Design	-	-
	CircuitMaker, KiCad EDA, ADS Circuit Design Software, Active HDL,		
	Qsapec NGCircuit Design Software,Simulide, OrCAD		
E	Recent Developments for Research		
1	http://web.engr.oregonstate.edu/~moon/research/files/Peter_Kiss.pdf		
2	https://www.irjet.net/archives/V3/i5/IRJET-V3I5167.pdf		
3	http://dafx16.vutbr.cz/dafxpapers/14-DAFx-16_paper_59-PN.pdf		
F	Others (Web, Video, Simulation, Notes etc.)		
1	https://www.youtube.com/watch?v=qhXZuVFhVzo		
2	https://www.youtube.com/watch?v=YTUHR0Q6Vwo		
3	https://www.youtube.com/watch?v=sUutDs7FFeA		
4	https://www.youtube.com/watch?v=K73N9ES_8nl		
5	https://www.youtube.com/watch?v=XCiLHOZsQl8		

6	https://www.youtube.com/watch?v=egfHY-NOt6Y	
7	https://www.youtube.com/watch?v=mwJ3uMWvJX0	
8	https://www.youtube.com/watch?v=2ecMG_OciLo	
9	https://www.youtube.com/watch?v=2gqsf9N9N_Y	

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

		5 / Topics with described Content	
Students must have	LAARNT THA TOULOWING (OURCAS	Y LODICS WITH ASSCRIDGA (ONTONT	

Mod		Course Name	Topic / Description	Sem	Remarks	Blooms
ules	Code					Level
	17ELN15 / 17ELN25	Electronics	Knowledge Of semiconducto Knowledge of number systems ar boolean algebra		Gap A seminar on semiconductors, number systems and boolean algebra	
-						
-						

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod	Topic / Description	Area	Remarks	Blooms
ules				Level
	Topics :	Placement,	Recent Developments	L2
	 Number System and 	Profession ,	required to be known for	
	Representation	GATE and other	placements and Course	
	Programs	competitive	projects.	
	Boolean Algebra and Logic Gates	exams		
	Data Communication			
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

Mod	Course	Course Outcome	Teach.	Concept	Instr	Assessment	Blooms'
ules	Code.#	At the end of the course, student	Hours		Metho	Method	Level
		should be able to			d		
1	18CS33.1	Understand the operation of	04	Diodes	Lectur	Q&A	L3
		diodes in different application		Application	е	Unit test	
		circuits		circuits			
1	18CS33.2	Understand the operation amplifier	04	Opamp	Lectur	Q & A	L3
		application circuits		application	е	Unit test	
				circuits			
2	18CS33.3	Understand the fundamentals of	04	Logic gates	Lectur	Assignment	
		logic gates through truth table		fundamental	е	and	L4
				S		Slip Test	
2	18CS33.4	Simplify Boolean equations by	04	Boolean	Lectur		L4

		Karnaugh map and Quine MCClusky method to design combinational circuits		equation simplification	e / PPT	Slip test CIA	
3	18CS33.5	Design data processing circuits using combination of gates	04	Data processing circuits design	Lectur e	Oral quiz CIA	L3
3	18CS33.6	Understand the fundamentals of combinational circuits by truth table and timing diagram	04	Combination al circuit applications		Slip test	L3
4	18CS33.7	Develop and understand the simple VHDL programs for different circuits	•	VHDL models	Lectur e	Slip test and assignment	L3
4	18CS33.8	Represent the flip flops as state diagram, characteristic equation	04	Flip flop Operation	Lectur e	Assignment and CIA	L3
5	18CS33.9	Illustrate the register and counter properties through truth table and timing diagram	04	Register Design	Lectur e / PPT	Quiz CIA	L3
5	18CS33.10	Interpret data conversion techniques through counter using state tables and graphs.	•	Counter Design	Lectur e / PPT	Slip test Assignment	L3
-							

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

	and should be able to employ 7 apply the course tearnings to		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
	Diodes can be used as rectifiers, signal limiters, voltage regulators, switches, signal modulators, signal mixers, signal demodulators, and oscillators	CO1	L3
1	Opamps are used for current to voltage converter, integrator	CO2	L3
2	Use of logic gates for building combinational circuits	CO3	L4
2	Used to simplification of boolean expressions	CO4	L4
3	Data processing circuits can be used in communication system	CO5	L3
	Combinational logic is used in computer circuits , such as half adders, full adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders.	CO6	L3
	VHDL hardware description language and its application to digital hardware design and verification.	CO7	L3
4	Flip flops can be used to store the data and frequency divider	CO8	L3
5	Registers are used to store the instructions	CO9	L3
5	Counters are used for counting electronic pulses and also used to convert signals	CO10	L3

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

Mod	Марр	bing	Mapping	Justification for each CO-PO pair						
ules			Level		el					
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-					
1	CO1	PO1		Knowledge of diodes is required in switching circuits which are used in complex circuits like transmitters and receivers	L3					
1	CO1	PO2	L3	Analysing problem in amplifier circuits require knowledge of opamp	L3					
1	CO1	PO3	L3	opamp are used in testing devices like oscilloscopes , voltmeters	L3					
1	CO1	PO4	L3	No investigations and interpretation content no mapping	L3					
1	CO1	PO5	L3	No content tool, no mapping	L3					
1	CO1	P06	L3	No engineering practice	L3					

1	CO1	PO7	L3	No matching for environment and sustainability	L3
1	CO1	PO8	L3	No matching for ethical principles	L3
1	CO1	PO9	L3	3	L3
1	CO1	PO1	L3	No communication	L3
		0			
1	CO1	PO1 1	L3	For project development in area of embedded devices, electronic projects knowledge of FET is useful	L3
1	CO1	PO1 2	L3	Learning in the context of technology changes .	L3
2	CO2	PO1	L4	Opamps are used in baseband receivers ,signal generators etc	L4
2	CO2		L4	Knowledge is useful in analysis of communication circuits	L4
2	CO2	-	L4	Opamps are used in circuits to perform mathematical operations	L4
2	CO2	PO4	L4	No investigations and interpretation content no mapping	L4
2	CO2	PO5	L4	No content tool, no mapping	L4
2	CO2	PO6	L4	No engineering practice	L4
2	CO2	PO7	L4	No matching for environment and sustainability	L4
2	CO2	PO8	L4	No matching for ethical principles	L4
2	CO2	PO9	L4	For managing the analog circuits in communication individual should require the knowledge of opamps	
2	CO2	PO1 0	L4	No communication	L4
2	CO2	PO1 1	L4	For project development in area of embedded devices, electronic projects knowledge of opamp is useful	L4
2	CO2	PO1 2	L4	Learning in the context of technology changes .practice	L4
3	CO3	PO1	L3	logic gates are used in all electronic devices like computers, lifts etc	L3
3	CO3	PO2	L3	knowledge of logic gates is required for analyzing problems in digital circuits	
3	CO3	PO3	L3	For designing digital circuits knowledge of logic gates is required	L3
3	CO3	PO4	L3	No investigations and interpretation content no mapping	L3
3	CO3	PO5	L3	No content tool, no mapping	L3
3	CO3	PO6	L3	No engineering practice	L3
3	CO3	PO7	L3	No matching for environment and sustainability	L3
3	CO3	PO8	L3	No matching for ethical principles	L3
3	CO3	PO9	L3	For managing the digital circuits individual should require the knowledge of logic gates	L3
3	CO3	PO1 0	L3	No communication	L3
3	CO3	PO1 1	L3	For electronic digital projects knowledge of logic gates is required	L3
3	CO3	PO1 2	L3	Learning in the context of technology changes .	L3
4	CO4	PO1	L3	Knowledge of K maps helps the students in circuit designing	L3
4	CO4	PO2	L3	Analysis of circuits makes the students better understanding of digital circuits	
4	CO4	PO3	L3	Helps the students in design of simple circuits using gates	L3
4	CO4		L3	No investigations and interpretation content no mapping	L3
4	CO4	1	L3	No content tool, no mapping	L3
4	CO4		L3	No engineering practice	L3
4	CO4	PO7	L3	No matching for environment and sustainability	L3
4	CO4		L3	No matching for ethical principles	L3
4	CO4	PO9	L3	For developing the digital circuits with minimum gates simplification methods are useful for individual	
4	CO4	PO1 0	L3	No communication	L3
4	CO4	PO1 1	L3	For digital project development simplification methods are useful	L3
4	CO4		L3	Learning in the context of technology changes .	L3
		·	-		

		2			
5	CO5	PO1	L3	Data processing circuits like mux ,demux are used in communication	13
5			L3	systems	L3
5	CO5	PO2	L3	To analyze the problem in communication systems knowledge of	L3
				data processing circuits is required	
5	CO5	PO3	L3	Encoders and decoders are used in data communication	L3
5	CO5	PO4	L3	No investigations and interpretation content no mapping	L3
5	CO5	PO5	L3	No content tool, no mapping	L3
5	CO5	PO6	L3	No engineering practice	L3
5	CO5	PO7	L3	No matching for environment and sustainability	L3
5	CO5	PO8	L3	No matching for ethical principles	L3
5	CO5	PO9	L3	To manage the digital communication circuits knowledge of data	L3
				processing circuits is useful	
5	CO5	PO1	L3	No communication	L3
		0			
5	CO5	PO1	L3	For digital project development knowledge of data processing circuits is	L3
		1		useful	
5	CO5	PO1	L3	Learning in the context of technology changes .	L3
		2			
6	CO6	PO1	L3	Flip flops are basic components of registers which are used in building	L3
				memory devices	
6	CO6	PO2	L3	To analyze the memory of sequential circuits knowledge of flip flops is	L3
				required	
6	CO6	PO3	L3	Design of sequential circuits needs the knowledge of flip flops	L3
6	CO6	PO4	L3	No investigations and interpretation content no mapping	L3
6	CO6	PO5	L3	No content tool, no mapping	L3
6	CO6	PO6	L3	No engineering practice	L3
6	CO6	PO7	L3	No matching for environment and sustainability	L3
6	CO6	PO8	L3	No matching for ethical principles	L3
6	CO6	PO9	L3	To manage the memory in sequential circuits individual require the	
			•	knowledge of flipflops	
6	CO6	PO1	L3	No communication	L3
		0			
6	CO6	PO1	L3	For digital electronic projects having memory knowledge of flip flop is	L3
		1		required	
6	CO6	PO1	L3	Learning in the context of technology changes .	L3
		2			
7	CO7	PO1	L3	Flip flop representation is required in design of counters	L3
7	CO7	PO2	L3	No analysis. No mapping	L3
7	CO7	PO3	L3	For digital clock design flip flop representation is required	L3
7	CO7	PO4	L3	No investigations and interpretation content no mapping	L3
7	CO7	PO5	L3	No content tool, no mapping	L3
7	CO7	P06	L3	No engineering practice	L3
7	, CO7	PO7	L3	No matching for environment and sustainability	L3
7	C07	PO8	L3	No matching for ethical principles	L3
7	, CO7	PO9	L3	No team work	L3
7	CO7	PO1	<u>_</u> L3	No communication	L3
	,	0	Ŭ		
7	CO7	PO1	L3	No project development	L3
		1	-		
7	CO7	PO1	L3	No lifelong learning .	L3
		2	-		
8	CO8	PO1	L3	Register and counters are sequential logic circuits which are used to	L3
			-	construct Finite state machines, a basic building block in all digital	
				circuitry.	
8	CO8	PO2	L3	No analysis	L3
8	CO8	PO3	L3	Registers are used in design of memory devices	L3
8	CO8	PO4	L3	No investigations and interpretation content no mapping	L3
L					

8	CO8		L3	No content tool, no mapping	L3
8	CO8	PO6	L3	No engineering practice	L3
8	CO8	PO7	L3	No matching for environment and sustainability	L3
8	CO8	PO8	L3	No matching for ethical principles	L3
8	CO8	PO9	L3	For storing and managing the data in memory individual should require the knowledge of registers	L3
8	CO8	PO1 0	L3	No communication	L3
8	CO8	PO1 1	L3	Every applications requires memory to store the data and knowledge of registers is required	L3
8	CO8	PO1 2	L3	lifelong learning & understanding the sequential circuits is essential for digital design	L3
9	CO9	PO1	L3	Counters are basic components of digital clock	L3
9	CO9	PO2	L3	No analysis	L3
9	CO9	PO3	L3	For most of digital applications clock is used	L3
9	CO9	PO4	L3	No investigations and interpretation content no mapping	L3
9	CO9	PO5	L3	No content tool, no mapping	L3
9	CO9	PO6	L3	No engineering practice	L3
9	CO9	PO7	L3	No matching for environment and sustainability	L3
9	CO9	PO8	L3	No matching for ethical principles	L3
9	CO9	PO9	L3	For designing of digital clock individual require th knowledge o design of counters	L3
9	CO9	PO1 0	L3	No communication	L3
9	CO9	PO1 1	L3	For electronic projects counter design is useful for dsigning the digital clock	L3
9	CO9	PO1 2	L3	Learning in the context of technology changes	L3
10	CO10		L3	Knowledge of ADC and DAC are required building in Broadband communications systems ,Satellite Communications , Radars and jammers	
10	CO10	PO2	L3	No analysis	L3

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

				pai	, ,	I CI I					-							
-	-	Course Outcomes										ome						-
Mod	CO.#	At the end of the course	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	Lev
ules		student should be able to			3	4	5	6	7	8	9	10	11	12	O1	02	03	el
1		Understand the operation of		2	2						2		2	2				L3
		diodes in different application																
		circuits																
1		Understand the operation	3	2	2						2		2	2				L3
		amplifier application circuits																
2		Understand the fundamentals of	3	2	2						2		2	2				L4
		logic gates through truth table																
2		Simplify Boolean equations by		2	2						2		2	2				L4
		Karnaugh map and Quine																
		MCClusky method to design																
		combinational circuits																
3	18CS33.5	Design data processing circuits	3	2	2						2		2	2				L3
		using combination of gates																
3	••	Understand the fundamentals of	-	2	2						2		2	2				L3
		combinational circuits by truth																
		table and timing diagram																
4		Develop and understand the	2		2													L3
		simple VHDL programs for																
		different circuits																

4		Represent the flip flops as state diagram, characteristic equation	3	2					2		2	2			L3
5		Illustrate the register and counter properties through truth table and timing diagram	3	2					2		2	2			L3
5		Interpret data conversion techniques through counter using state tables and graphs.	2	2					2		2	2			L3
-	CS501PC	Average attainment (1, 2, or 3)													-
-	PO, PSO	1.Engineering Knowledge; 2.Probl 4.Conduct Investigations of Comp and Society; 7.Environment and 10.Communication; 11.Project M S1.Software Engineering; S2.Data I	ole; Si 1an	x Prob Istaina Pageme	lem bilit ent	is; 5 y; 8. and	Mod Eth d F	dern ics; Finar	Too 9.Inc nce;	l Us Iivia 12.	sage lual Life	e; 6 Lar	The d 7	e Eng Team	ineer work;

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
ules					
1					
2					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teach.		No. of question in Exam					CO	Levels
ules		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
							Asg			
1	Diodes and operation amplifiers	08	2	-	-	1	1	2	CO1, CO2	L3
2	Kmaps and other techniques	08	2	-	-	1	1	2	CO3, CO4	L4
3	Combinational logic circuits	08	-	2	-	1	1	2	CO5, CO6	L3
4	VHDL models and flip flops	08	-	2	-	1	1	2	CO7, C08	L3
5	Register and counters	08	-	-	4	1	1	2	CO9, CO10	L3
-	Total	40	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Mod	Evaluation	Weightage in	СО	Levels
ules		Marks		
1, 2	CIA Exam – 1	30	CO1, CO2, CO3,CO4	L3,L4
3, 4	CIA Exam – 2	30	CO5, C06,CO7,CO8	L3,L3
5	CIA Exam – 3	30	CO9,CO10	L3
1, 2	Assignment - 1	10	CO1, CO2, CO3,CO4	L3,L4
3, 4	Assignment - 2	10	CO5, C06,CO7,CO8	L3,L3
5	Assignment - 3	10	CO9,CO10	L3

1 - 5	Other Activities – Mini Project	_	_	_
5	Quiz - 3		-	-
3, 4	Quiz - 2		-	-
1, 2	Quiz - 1		_	_
	Seminar - 3		_	-
3, 4	Seminar - 2		-	-
1, 2	Seminar - 1		-	-

D1. TEACHING PLAN - 1

Module - 1

Title:	Diodes and Operational amplifier	Appr	08 Hrs
Thue.		Time:	001113
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Understand the operation of diodes in different application circuits	CO1	L3
2	Understand the operation amplifier application circuits	CO2	L3
b	Course Schedule	-	-
Class N	p Portion covered per hour	-	-
1	Introduction to Photodiodes	CO1	L2
2	Light Emitting Diodes and Optocouplers	CO1	L3
3	BJT Biasing : Fixed bias , Collector to base Bias	CO1	L2
4	voltage divider bias, Operational Amplifier Application Circuits	CO1	L3
5	Multivibrators using IC-555, Peak Detector, Schmitt trigger, Active Filters	CO2	L2
6	Non-Linear Amplifier, Relaxation Oscillator, Current-to-Voltage and Voltage-to-	CO2	L2
	Current Converter		
7	Regulated Power Supply Parameters, adjustable voltage regulator	CO2	L3
8	D to A and A to D converter.	CO2	L2
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Diodes can be used as rectifiers, signal limiters, voltage regulators, switches, signal modulators, signal mixers, signal demodulators, and oscillators	CO1	L3
2	Opamps are used for current to voltage converter, integrator	CO2	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain working of photo diode?	CO1	L2
2	List the applications of photo diode.	CO1	L2
3	Explain working of LED?	CO1	L2
4	List the applications of LED.	CO1	L2
5	Explain working of optocoupler?	CO1	L2
6	List the applications of optocoupler.	CO1	L2

Copyright ©2017. cAAS. All rights reserved.

4	What is differences b/w ideal and practical op-amp amplifier?	CO2	L3
8	Explain astable multivibrator using 555 timer?	CO2	L3
9	Explain mono multivibrator using 555 timer?	CO2	L3
10	Explain Comparator? How do you convert sine wave to rectangular output,	CO2	L2
	using Op-Amp?		
9	Explain the ADC circuit?	CO2	L2
10	Explain the DAC circuit?	CO2	L2
11	Explain the working of relaxation oscillator?	CO2	L3
12	Explain the working of SAR?	CO2	L2
13	Write the SAR code conversion tree for 1000.	CO2	L3
е	Experiences	-	-
1			
2			

Title:	K maps and other techniques	Appr Time:	08 Hrs
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	_	Level
1	Understand the fundamentals of logic gates through truth table	CO3	L4
2	Simplify Boolean equations by Karnaugh map and Quine MCClusky method to design combinational circuits	CO4	L4
b	Course Schedule	-	-
lass No	p Portion covered per hour	-	-
1	Karnaugh maps: minimum forms of switching functions	CO3	L4
2	Two and three variable Karnaugh maps	CO3	L4
3	Four variable karnaugh maps	CO3	L4
4	Determination of minimum expressions using essential prime implicants	CO3	L4
5	Quine-McClusky Method, determination of prime implicants	CO4	L4
6	The prime implicant chart, Petricks method	CO4	L4
7	Simplification of incompletely specified functions	CO4	L4
8	Simplification using map-entered variables	CO4	L4
с	Application Areas	-	-
1	Use of logic gates for building combinational circuits	CO3	L4
2	Used to simplification of boolean expressions	CO4	L4
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the logic circuit and truth table of the Inverter, OR and AND gate	CO3	L3
2	Why NAND & NOR gates are called universal gates.	CO3	L3
3	Differentiate between positive and negative logic.	CO3	L3
4	Implement AB+CD with only three NAND gates. Draw logic diagram also. Assume the inverted input is available.	CO3	L4
5	Minimize the f0llowing using K-maps: if(A,B,C,D)=Σm(0,1,2,3,5,9,14,15)+ΣΦ(4,8,11,12)	CO4	L4
6	Derive minimal SOP expression using K map and draw circuit diagram $f(a,b,c,d) = \sum m(1,4,6,8,9,10,11,12,13)+d(3,15)$	CO4	L4
7	Derive minimal POS expression using K map and draw circuit diagram f(a,b,c,d) = πM(1,2,8,9,12,13,14)+d(0,14,15)	CO4	L4
8	What is static-1 hazard? Explain with an example how it can be covered.	CO4	L3
9	Simplify the given expression using Quine Mcclusky method $f(a,b,c,d) = \sum m(1,2,8,9,12,13,14)$	CO4	L4

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs Code:		18CS33	Sem:		Marks:	50	Time: §	90 minute	es	
Cour	rse:	Analog and	d Digital ele	ectronics						
-	-	-			ch carry equa	l marks. I	Module : 1, 2	Marks	СО	Level
1	а	What is a phapplications		Explain in (detail with cons	truction , w	orking and its	12	CO1	L2
	b	Write a shor	rt note on Pe	eak Detecto	or.			8	CO2	L2
	с				Vcc = +18v)	ne base bia	as, when β_{min} =50 and	1 5	CO1	L3
					OR					
2	a		-		multivibrator al	ong with w	ave forms.	12	CO2	L2
	b	Explain Coll		Ű				8	CO1 CO1	L3
	С	List out the	List out the applications of Photo coupler.							L2
3	а	Explain about positive and negative logic, Prove that positive 'OR' is equal to negative AND.							CO3	L2
	b		e following I ∑m (5,6,7,1		nction using K-n (4,9,14,15).	nap metho	d.	6	CO3	L4
	С		-				lusky method to fi	nd ¹⁰	CO4	L4
	d		ethod to sin		$F(A,B,C,D) = \sum n$			5	CO4	L4
					OR					
4	а		= ∑m (6,7,9),10,13) + ∑o	ving Boolean fu d (1,4,5,11,15). (0,15).	nction usin	g K-map.	8	CO3	L4
	b	Using Petri	ck method	find the			ts for the followin	ng 8	CO4	L4
	С			-	-		n the least significa 3,15) + ∑d (8,9,10,11).		CO4	L4
	d				es of hazards.			4	CO4	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	rs Code: 18CS33 Sem: III Marks: 10 Time: 9				90 – 120 minutes						
Cours	Course: Analog and Digital electronics Module : 1, 2										
Note:	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.										
SNo	l	USN		Assig	gnment De	scription		Marks	CO	Level	
1			Explain worki	ng of photo (diode?			10	CO1	L2	
2			List the appli	cations of p	ohoto diode	<u>)</u> .		10	CO1	L2	
3			Explain worki	ng of LED?				10	CO1	L2	
4			List the appli	cations of l	_ED.			10	CO1	L2	
5			Explain worki	ng of optocc	upler?			10	CO1	L2	
6			List the appli	cations of o	optocoupler.			10	CO1	L2	
7			What is diffe	rences b/w	/ ideal and p	oractical	op-amp amplifier	? 10	CO2	L3	
8			Explain astab	ole multivib	rator using	555 timer	?	10	CO2	L3	
9			Explain mono	o multivibra	tor using 5	55 timer?		10	CO2	L3	
10			Explain Con	nparator?	How do y	ou conv	ert sine wave f	10	CO2	L2	
			rectangular c			>					
11			Explain the A					10	CO2	L2	
12			Explain the D	AC circuit?				10	CO2	L2	

13	Explain the working of relaxation oscillator?	10	CO2	L3
14	Explain the working of SAR?	10	CO2	L2
15	Write the SAR code conversion tree for 1000.	10	CO2	L3
	Explain the logic circuit and truth table of the Inverter, OR and AND gate	10	CO3	L3
17	Why NAND & NOR gates are called universal gates.	10	CO3	L3
18	Differentiate between positive and negative logic.	10	CO3	L3
19	Implement AB+CD with only three NAND gates. Draw logic diagram	10	CO3	L4
	also. Assume the inverted input is available.			
20	Minimize the following using K-maps:	10	CO4	L4
	if(A,B,C,D)=Σm(0,1,2,3,5,9,14,15)+ΣΦ(4,8,11,12)			
21	Derive minimal SOP expression using K map and draw circuit diagram f(a,b,c,d) = ∑m(1,4,6,8,9,10,11,12,13)+d(3,15)	10	CO4	L4
22	Derive minimal POS expression using K map and draw circuit diagram f(a,b,c,d) = πM(1,2,8,9,12,13,14)+d(0,14,15)	10	CO4	L4
23	What is static-1 hazard? Explain with an example how it can be covered.	10	CO4	L3
24	Simplify the given expression using Quine Mcclusky method f(a,b,c,d)= ∑m(1,2,8,9,12,13,14)	10	CO4	L4

D2. TEACHING PLAN - 2

Title:	Combinational circuits and applications	Appr	08 Hrs
		Time:	
a	Course Outcomes	СО	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Design data processing circuits using combination of gates	CO5	L3
2	Understand the fundamentals of combinational circuits by truth table and timing diagram	CO6	L3
b	Course Schedule		
Class No	Portion covered per hour	-	-
1	Combinational circuit design and simulation using gates	CO5	L2
2	Review of Combinational circuit design	CO5	L2
3	Design of circuits with limited Gate Fan-in	CO5	L3
4	Gate delays and Timing diagrams, Hazards in combinational Logic	CO6	L3
5	Simulation and testing of logic circuits, Multiplexers	CO6	L3
6	Three state buffers, Decoders and encoders	CO6	L3
7	Programmable Logic devices, Programmable Logic Arrays	CO6	L3
8	Programmable Array Logic.	CO6	L3
с	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Data processing circuits can be used in communication system	CO5	L2
2	Combinational logic is used in computer circuits , such as half adders, full adders, half subtractors, full subtractors, multiplexers, demultiplexers, encoders and decoders.	CO6	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Explain the gate delays and timing diagrams?	CO5	L2
2	Explain simulation and testing with examples.	CO5	L2
3	Why is a Multiplexer called a Universal logic	CO6	L3

4	Configure 16 to 1 MUX using 4 to 1 MUX	CO6	L3
5	Implement the f(x,y,z)= $\sum m(0,4,5,6)$ function using 8to1 MUX	CO6	L3
6	Define parity generator and parity checker	CO6	L3
7	Design 3 - 8 decoder	CO6	L3
8	Design a 32 to 1 multiplexer using two 16 to 1 multiplexers and one 2 to 1	CO6	L3
	multiplexer.		
9	Give seven segment decoder using PLA.	CO6	L3
10	Explain PLA and PAL.	CO6	L2
е	Experiences	-	-
1			
2			

Title:	VHDL models and Flip Flops	Appr Time:	08 Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Develop and understand the simple VHDL programs for different circuits	CO7	L3
2	Represent the flip flops as state diagram, characteristic equation	CO8	L3
b	Course Schedule		
	Portion covered per hour	-	-
1	Introduction to VHDL: VHDL description of combinational circuits	CO7	L2
2	VHDL Models for multiplexers	C07	L3
3	VHDL Modules.	C07	L3
4	Latches and Flip-Flops: Set Reset Latch, Gated Latches	CO8	L3
5	Edge-Triggered D Flip Flop 3	CO8	L3
6	SR Flip Flop, J K Flip Flop	CO8	L3
7	T Flip Flop, Asynchronous	CO8	L3
	Sequential Circuits		
8	Flip Flop with additional inputs	CO8	L3
с	Application Areas	-	_
- -	Students should be able employ / apply the Module learnings to	-	-
1	VHDL hardware description language and its application to digital hardware design and verification.		
2	Flip flops can be used to store the data and frequency divider		
d	Review Questions	_	_
-	The attainment of the module learning assessed through following questions	_	_
1	Explain the VHDL models.	CO7	L2
2	Write a note on VHDL Models for multiplexers	CO7	L2
3	Describe combinational and sequential circuit.	CO7	L2
4	What is latch and flip flop?	CO8	L2
5	Explain with truth table derivation for SR latch	CO8	L3
6	Explain RS and Gated Flip Flops.	CO8	L3
7	Explain edge triggered D and JK Flip Flops	C08	L3
8	Derive the characteristic equation for SR, D , T and JK fli flop.	C08	 L3
9	Explain the +ve edge triggered SR, D , T and JK fli flop with timing diagram	C08	 L3
10	Explain the -ve edge triggered SR, D , T and JK fli flop with timing diagram	C08	 L3
е	Experiences		
1			
2			
3			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		18CS33 Sem: III Marks: 50 Time: 90	minute	S	
Code					
Cour	se	Analog and Digital electronics			
-	-	Note: Answer all questions, each carry equal marks. Module : 3, 4	Marks	CO	Level
1	a	Complete the timing diagram for the given circuit along with the truth table. Assume that both gates have a propagation delay of 5ns. $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	CO5	L4	5
	b	Implement the following function using 8:1 multiplexer f(a,b,c,d) = Σ m (0,1,5,6,8,10,12,15).	CO5	L3	6
	С	Write a Short note on Tree state buffer.	CO6	L3	7
	d	Design a 32:1 multiplexer using 16:1 mux and 2:1 multiplexer.	CO6	L3	7
		OR		v	,
2	а	Explain Gate delays and timing diagrams.	CO5	L2	6
	b	What is multiplexer? Design a 8:1 multiplexer using 2:1 multiplexers.	CO5	L3	8
	С	Show how using a 3:8 decoder and multi input OR gates following Boolean expressions can be realized simultaneously. a. f(a,b,c) = Σ m(0,4,6) b. f(a,b,c) = Σ m(1,2,3,7) c. f(a,b,c) = Σ m(0,5)	CO6	L3	6
	d	Write a Short note on ROM.	CO6	L2	5
3	а	Deference between Combination and Sequential circuit, Latches and Flip Flops.	CO7	L2	5
	b	With a neat logic diagram and truth table explain the working of SR Latch.	CO7	L3	10
	С	With a neat diagram and waveform explain the working of relaxation oscillator.	CO8	L2	10
		OR			
4	а	Give characteristic table, characteristic equation and excitation table for SR, D and JK flip flop.	CO8	L3	10
	b	With a neat logic diagram and truth table explain the working of J K flip flop.	CO7	L3	7
	С	With a neat diagram explain SAR and also the code conversion tree of SAR for 1000.	CO7	L2	8

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions										
Crs C	rs Code: 18CS33 Sem: III Marks: 10 Time: g		90 – 120 minutes								
Cours	se:	Analog a	nd Digital eleo	ctronics		Module : 3,4	1				
Note:	Each	student t	to answer 2-3	assignment	ts. Each assi	gnment carr	ies equal ma	ırk.			
SNo	ι	JSN		Assigi	nment Desc	ription		Marks	СО	Level	
1			Explain the gate delays and timing diagrams?					10	CO5	L2	
2			Explain simulation and testing with examples.					10	CO5	L2	
3			Why is a Mult	iplexer calle	ed a			10	CO6	L3	
			Universal logi								
4			Configure 16	to 1 MUX us	ing 4 to 1 M	JX		10	CO6	L3	

Implement the f(x,y,z)= $\sum m(0,4,5,6)$ function using 8to1 MUX	10	CO6	L3
Define parity generator and parity checker	10	CO6	L3
Design 3 - 8 decoder	10	CO6	L3
Design a 32 to 1 multiplexer using two 16 to 1 multiplexers and one 2 to 1 multiplexer.	10	CO6	L3
Give seven segment decoder using PLA.	10	CO6	L3
Explain PLA and PAL.	10	CO6	L2
Explain the VHDL models.	10	CO7	L2
Write a note on VHDL Models for multiplexers	10	CO7	L2
Describe combinational and sequential circuit.	10	CO7	L2
What is latch and flip flop?	10	CO8	L2
Explain with truth table derivation for SR latch	10	CO8	L3
Explain RS and Gated Flip Flops.	10	CO8	L3
Explain edge triggered D and JK Flip Flops	10	CO8	L3
Derive the characteristic equation for SR, D , T and JK fli flop.	10	CO8	L3
Explain the +ve edge triggered SR, D , T and JK fli flop with	10	CO8	L3
timing diagram			
	10	CO8	L3
timing diagram			
	Define parity generator and parity checker Design 3 - 8 decoder Design a 32 to 1 multiplexer using two 16 to 1 multiplexers and one 2 to 1 multiplexer. Give seven segment decoder using PLA. Explain PLA and PAL. Explain the VHDL models. Write a note on VHDL Models for multiplexers Describe combinational and sequential circuit. What is latch and flip flop? Explain RS and Gated Flip Flops. Explain edge triggered D and JK Flip Flops Derive the characteristic equation for SR, D , T and JK fli flop with timing diagram Explain the -ve edge triggered SR, D , T and JK fli flop with	Define parity generator and parity checker10Design 3 - 8 decoder10Design a 32 to 1 multiplexer using two 16 to 1 multiplexers and one 2 to 1 multiplexer.10Give seven segment decoder using PLA.10Explain PLA and PAL.10Explain the VHDL models.10Write a note on VHDL Models for multiplexers10Describe combinational and sequential circuit.10What is latch and flip flop?10Explain RS and Gated Flip Flops.10Explain edge triggered D and JK Flip Flops10Derive the characteristic equation for SR, D, T and JK fli flop.10Explain the +ve edge triggered SR, D, T and JK fli flop with10Explain the -ve edge triggered SR, D, T and JK fli flop with10	Define parity generator and parity checker10CO6Design 3 - 8 decoder10CO6Design a 32 to 1 multiplexer using two 16 to 1 multiplexers and one 2 to 1 multiplexer.10CO6Give seven segment decoder using PLA.10CO6Explain PLA and PAL.10CO6Explain the VHDL models.10CO7Write a note on VHDL Models for multiplexers10CO7Describe combinational and sequential circuit.10CO7What is latch and flip flop?10CO8Explain RS and Gated Flip Flops.10CO8Explain edge triggered D and JK Flip Flops10CO8Derive the characteristic equation for SR, D, T and JK fli flop.10CO8Explain the +ve edge triggered SR, D, T and JK fli flop with10CO8Explain the -ve edge triggered SR, D, T and JK fli flop with10CO8

D3. TEACHING PLAN - 3

Title:	Register and Counters	Appr Time:	08Hrs
a	Course Outcomes	CO	Blooms
-	At the end of the topic the student should be able to	-	Level
1	Illustrate the register and counter properties through truth table and timing diagram	CO9	L3
2	Interpret data conversion techniques through counter using state tables and graphs.	CO10	L3
b	Course Schedule	-	-
Class N	Portion covered per hour	-	-
1	Introduction Registers and Counters	CO9	L2
2	Registers and Register Transfers	CO9	L2
3	Registers and Register Transfers continued	CO9	L2
4	Parallel Adder with accumulator	CO10	L3
5	shift registers, Design of Binary counters	CO10	L3
6	Counters for other sequences	CO10	L3
7	Counter design using SR and J K Flip Flops	CO10	L3
8	Sequential parity checker, State tables and graphs	CO10	L3
С	Application Areas	-	-
-	Students should be able employ / apply the Module learnings to	-	-
1	Registers are used to store the instructions	CO9	L3
2	Counters are used for counting electronic pulses and also used to convert signals	CO10	L3
d	Review Questions	-	-
-	The attainment of the module learning assessed through following questions	-	-
1	Mention the difference between combinational & sequential circuits with block diagram.	CO9	L2
2	Explain the operation of Jk master slave flip flop flip-flop. With logic diagram,characteristic table	CO9	L3
3	Explain the working of switch contact bounce circuit	CO9	L3
4	Derive the characteristic equation of RS JK and D flip flop	CO9	L2

5	Draw the state diagram of RS JK and D flip flop	CO10	L3
6	List the different types of registers	CO10	L3
7	Explain the serial in serial out shift register . Show how the data is entered for	CO10	L2
	data 1010		
8	Briefly explain the applications of registers	CO10	L3
9	Explain the ring counters and Johnson countesr	CO10	L3
10	Differentiate synchronous and asynchronous counters	CO10	L2
11	Explain the asynchronous mod 8 countes	CO10	L3
е	Experiences	-	-
1			
2			

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs Code	e:	18CS33	Sem:		Marks:	50	Time	9	0 minute	minutes		
Cour	Course: Analog and Digital electronics											
-	-	Note: Answ	ver all ques	tions, ea	ch carry equa	l marks.	Module :	5	Marks	СО	Level	
1	а	With a neat	logic diagr	ams expl	ain Parallel Ac	lder with	accumulat	or.	7	COg	L3	
	b	Design of B	inary count	ers and ex	xplain.				8	CO10	L2	
					ÔR							
2	а	Explain 4 bit serial in parallel out register.								CO9	L3	
	b	-	Explain a 3 bit binary Ripple up counter. Give the block diagram, trut table and output							CO10	L2	
	С	Differentiate	e between s	synchron	ous counter a	nd async	chronous c	ounters	2	CO9	L3	
3	а	Design syno	chronous M	OD - 6 c	counter with tr	uth table	e and state	e diagram	ı. 7	CO10	L3	
	b	Design the	digital clock	<					8	CO9	L3	
					OR							
4	а	Explain 5 bit Resistor divider with diagram.							5	CO9	L3	
	b	Explain the	terms Accu	iracy and	Resolution fo	r D/A co	nverter		4	C10	L2	

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions									
Crs C	Crs Code: 18CS33 Sem: III Marks: 10 Time: 9							90 - 120	minute	S
Cours	se:	Analog a	nd Digital ele	ctronics		Module	e:5			
Note:	Each	student	to answer 2-3	assignmen	ts. Each ass	ignmen	t carries equal ma	ark.		
SNo		USN		Assig	nment Des	cription		Marks	СО	Level
1			Mention the	difference	between c	ombinat	ional & sequenti	al 10	CO9	L2
			circuits with k	olock diagra	am.					
2						lave flip	flop flip-flop. Wit	h 10	CO9	L3
	logic diagram,characteristic table									
3 Explain the working of switch contact bounce circuit						10	CO9	L3		
4							nd D flip flop	10	CO9	L2
5			Draw the stat	e diagram o	of RS JK and	d D flip fl	ор	10	CO10	L3
6			List the differ					10	CO10	L3
7			Explain the s	erial in seria	l out shift re	gister . S	Show how the dat	ta 10	CO10	L2
			is entered for	data 1010						
8 Briefly explain the applications of registers						10	CO10	L3		
9 Explain the ring counters and Johnson countesr						10	CO10	L3		
10 Differentiate synchronous and asynchronous counters						10	CO10	L2		
11			Explain the a	synchronou	is mod 8 co	untes		10	CO10	L3

12	Mention the difference between combinational & sequential circuits with block diagram.	10	CO9	L2
13	Explain the operation of Jk master slave flip flop flip-flop. With logic diagram,characteristic table	10	CO9	L3
14	Explain the working of switch contact bounce circuit	10	CO9	L3
15	Derive the characteristic equation of RS JK and D flip flop	10	CO9	L2
16	Draw the state diagram of RS JK and D flip flop	10	CO10	L3
17	List the different types of registers	10	CO10	L3
18	Explain the serial in serial out shift register . Show how the data is entered for data 1010	10	CO10	L2
19	Briefly explain the applications of registers	10	CO10	L3
20	Explain the ring counters and Johnson countesr	10	CO10	L3
21	Differentiate synchronous and asynchronous counters	10	CO10	L2
22	Explain the asynchronous mod 8 countes	10	CO10	L3

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se	Analog and Digital electronics Month /	' Year	May /2	2018					
		18CS33 Sem: III Marks: 80 Time:		180 mi						
	Note	Answer all FIVE full questions. All questions carry equal marks.	Marks	СО	Level					
ule				CO1	L2					
1	а									
	-	Photo diode	20	<u> </u>						
	b	What are the differences between photo coupler and LED		CO1	L3					
	С	Explain the Collector to base bias circuit?		CO2	L2					
	d	Explain with neat sketches the operation and characteristics of Fixed base		CO2	L3					
	0	bias Eveloin the working of Doold Detector		CO2	L2					
	e	Explain the working of Peak Detector	46 /							
2	а	What are Universal gates? Implement the basic gates using Universal gates only.	16 / 20	C03	L2					
	b	Using K-map find the reduced SOP form of		C03	L4					
		f(A,B,C,D)=∑M(5,6,7,12,13)+∑d(4,9,14,15).		<u> </u>						
		Explain Duality Theorem?		CO4	L2					
		Write the verilog code for given expression. Y=AB+CD		CO4	L4					
		Simplify the following using Mc-Cluskey method f=∑M(4,8,10,11,12,15)+d(9,14)		CO4	L4					
3		Implement the following function using a 8:1 multiplexer: $f(a,b,c,)=\sum M(0,1,3,4)$.	16 / 20	CO5	L2					
	b	What is a magnitude comparator? Explain with a neat block		CO5	L2					
		diagram an n-bit magnitude comparator								
	С	Design 7 segment decoder using PLA		CO6	L2					
		Realize the following function using the 3:8 decoder $F_1(A, B, C) = \sum M(1,2,3,4)$, $F_2(A, B, C) = \sum M(3,5,7)$.		CO6	L4					
	е	Give transition diagram of JK and T Flip flops		CO6	L3					
	f	Differentiate between combinational circuit and sequential circuit		CO5	L3					
4		Draw the logic diagram of a 4-bit serial in serial out shift register using J-K flip flop and explain.	16 / 20	C07	L3					
		Design a modulo-5 up counter (synchronous) using J-K flip flop		CO8	L3					
		Difference between Asynchronous and Synchronous Counter		CO7	L3					
		Draw the logic circuits and the excitation tables for the T, JK flip-flops.		CO8	L3					
5		Explain with logic diagram 3 bit simultaneous A/D converters.	16	CO10	L3					
		What is Binary ladder? Explain the binary ladder with digital input of 1000		CO10	L3					
		Give performance parameters of DAC or D/A converters		CO10	L3					
	d	Explain Digital clock with block Diagram.			L3					

2. SEE Important Questions

Cours		Analog and Digital Electronics Mon	th / Year	/2018	
Crs C		18CS33 Sem: 3 Marks: 100 Time		180 mi	
		Answer all FIVE full questions. All questions carry equal marks.	Marks		Level
1	a	Explain the construction & working and principle of operation of an	10	CO1	L2
-	0.	Photo diode			
	b	What are the differences between photo coupler and LED	04	CO1	L2
	С	Explain the Collector to base bias circuit?	06	CO2	L2
		OR			
-	а	Explain with neat sketches the operation and characteristics of Fixed bab	ase 10	CO1	L2
	b	Explain the working of Peak Detector	10	CO1	L2
2	а	What are Universal gates? Implement the basic gates us Universal gates only.	ing 10	C03	L2
	b	Using K-map find the reduced SOP form of f(A,B,C,D)=∑M(5,6,7,12,13)+∑d(4,9,14,15).	10	CO4	L4
		OR			
-	Eaxp	Explain Duality Theorem?	04	CO3	L2
		Write the verilog code for given expression. Y=AB+CD	04	CO4	
		Simplify the following using Mc-Cluskey meth f=∑M(4,8,10,11,12,15)+d(9,14)		CO4	L4
3	а	Implement the following function using a 8:1 multiplexer: $f(a,b, \nabla M(0,1,3,4))$.	c,)= 10	CO5	L4
	b	What is a magnitude comparator? Explain with a neat block	05	CO5	L4
		diagram an n-bit magnitude comparator			
	С	Design 7 segment decoder using PLA	05	CO6	L2
		OR			
-	а	Realize the following function using the 3:8 decoder $F_1(A, B, \Sigma M(1,2,3,4), F_2(A, B, C) = \Sigma M(3,5,7)$.	C)= 10	CO5	L4
	b	Give transition diagram of JK and T Flip flops	06	CO6	L2
	С	Differentiate between combinational circuit and sequential circuit	04	CO6	L2
4		Draw the logic diagram of a 4-bit serial in serial out shift register using . flip flop and explain.	J-K 10	CO8	L2
	b	Design a madula 5 un acuntar (gunahrangua) using 11/ Ain Aon	10	CO8	L4
		Design a modulo-5 up counter (synchronous) using J-K flip flop OR			
_	2	UK	10	CO7	L4
	а	Explain Johnson Counter with neat diagram and timing diagram	10		L4
	b	Difference between Asynchronous and Synchronous Counter	04	CO8	L2
	С	Draw the logic circuits and the excitation tables for the T, JK flip-flops.	06	CO7	L4
5	а	Explain with logic diagram 3 bit simultaneous A/D converters.	10	CO10	L4
	b	What is Binary ladder? Explain the binary ladder with digital input of 100		CO10	L4
		OR			
	а	Give performance parameters of DAC or D/A converters	10	CO10	L4
	b	Explain Digital clock with block Diagram.	10	COg	L4
-				Ŭ	<u>.</u>
		· · · · · · · · · · · · · · · · · · ·			-

G. Content to Course Outcomes

1. TLPA Parameters

	Table 1: TLPA	– Examp	le Cours	е			
Mo dul e- #	Course Content or Syllabus (Split module content into 2 parts which have similar concepts)		Learning	Bloo ms'	Identified Action Verbs for Learning	on	Assessment Methods to Measure Learning
	<i>B</i> Photodiodes, Light Emitting Diodes and Optocouplers ,BJT Biasing :Fixed bias ,Collector to base Bias , voltage divider bias.	<u>С</u> 04	D L2	E L3	<i>F</i> 1.Identify 2. Diodes Applicati on	G	<i>H</i> Questionnai re and Assignment
1	Operational Amplifier Application Circuits: Multivibrators using IC-555, Peak Detector, Schmitt trigger, Active Filters, Non-Linear Amplifier, Relaxation Oscillator, Current-to-Voltage and Voltage-to-Current Converter, Regulated Power Supply Parameters, adjustable voltage regulator ,D to A and A to D converter.	04	L3	L3	1. Understa nd 2. Opamp applicati on circuits		CIA
	Karnaugh maps: minimum forms of switching functions, two and three variable Karnaugh maps, four variable karnaugh maps, determination of minimum expressions using essential prime implicants	04	L4	L4	1. Understa nd 2. Logic gates fundame ntals	Chalk & Board	CIA
	Quine-McClusky Method: determination of prime implicants, The prime implicant chart, petricks method, simplification of incompletely specified functions, simplification using map-entered variables	04	L4	L4	1.Underst and 2. Boolean equation simplifica tion		CIA and Assignment
	Combinational circuit design and simulation using gates: Review of Combinational circuit design, design of circuits with limited Gate Fan-in ,Gate delays and Timing diagrams, Hazards in combinational Logic, simulation and testing of logic circuits	04	L2	L3	1. Understa nd 2. Data processin g circuits design		CIA and Assignment
	Multiplexers, Decoders and Programmable Logic Devices: Multiplexers, three state buffers, decoders and encoders, Programmable Logic devices, Programmable Logic Arrays, Programmable Array Logic.	04	L3	L3	1.Underst and 2. Combina tional circuit applicati ons		CIA & Assignment
	Introduction to VHDL: VHDL description of combinational circuits, VHDL Models for multiplexers, VHDL Modules.	04	L2	L3	1. Compreh end 2.VHDL models	Chalk & Board	CIA and Assignment

4	Latches and Flip-Flops: Set Reset Latch,	04	L3	L3	1.	Chalk &	CIA and
	Gated Latches, Edge-Triggered D Flip				Understa	Board	Assignment
	Flop 3,SR				nd		
	Flip Flop, J K Flip Flop, T Flip Flop, Flip				2. Flip		
	Flop with additional inputs, Asynchronous				flop		
	Sequential Circuits				Operatio		
	Sequential Circuits				n		
5	Registers and Counters: Registers and	04	L3	L3	1.Underst	Chalk &	CIA and
	Register Transfers, Parallel Adder with				and	Board	Assignment
	accumulator, shift registers				2.Registe		
					r Design		
5	design of Binary counters, counters for	04	L2	L3	1.	Chalk &	CIA and
	other sequences, counter design using				Understa	Board	Assignment
	SR and J K Flip Flops, sequential parity				nd		
	checker, state tables and graphs				2.Counter		
	checker, state tables and graphs				s Design		

2. Concepts and Outcomes:

Table 2: Concept to Outcome – Example Course

Mo	J		Final Concept		CO Components	Course Outcome
dul		Concepts		Justification	(1.Action Verb,	
e-	from study of	from		(What all Learning	2.Knowledge,	
#	the Content	Content		Happened from the	3.Condition /	Student Should be
	or Syllabus			study of Content /	Methodology,	able to
				Syllabus. A short	4.Benchmark)	
				word for learning or		
				outcome)		
A	/	J	K	L	M	N
				Diodes Application	1.Identify	Understand the
		Applicatio		circuits	2. Diodes	operation of diodes
	diodes in	n circuits			Application	in different
	different					application circuits
	application					
	circuits					
				Opamp application	1. Understand	Understand the
	the operation	applicatio		circuits	2. Opamp	operation amplifier
	amplifier	n circuits			application circuits	application circuits
	application					
	circuits					
2	Apply the	Logic	Logic gates	Logic gates	1. Understand	Understand the
	knowledge of	gates		fundamentals	2. Logic gates	fundamentals of
	fundamentals	fundamen			fundamentals	logic gates through
	of logic gates	tals				truth table
	through truth					
	table					
2	Simplify	Boolean	Boolean	Boolean equation	1.Understand	Simplify Boolean
		equation		simplification	2. Boolean equation	
		simplificat			simplification	Karnaugh map and
		ion .				Quine MCClusky
	methods					method to design
						combinational
						circuits
3	Designing of	Data	Data	Data processing	1. Understand	Design data
				circuits design	2. Data processing	processing circuits
		g circuits			circuits design	using combination
		-	design			of gates
	gates					
		Combinati	Combinationa	Combinational	1.Understand	Understand the
-	al circuits			circuit applications	2. Combinational	fundamentals of
	working with					combinational
	with with	Should	l	1		

	truth table and timing diagram	applicatio ns				circuits by truth table and timing diagram
4	write simple VHDL programs for different circuits	models	VHDL	VHDL models	1. Comprehend 2.VHDL models	Develop and understand the simple VHDL programs for different circuits
	U U U	Flip flop Operation	Flip flops	Flip flop Operation	1. Understand 2. Flip flop Operatior	Represent the flip flops as state diagram, characteristic equation
5	Designing the Registers	Register Design	Register	Register Design	1.Understand 2.Register Design	Illustrate the register and counter properties through truth table and timing diagram
	Designing the counters	Counter Design	Counter	Counter Design	1. Understand 2.Counters Design	Interpret data conversion techniques through counter using state tables and graphs.